12-14-2006, 04:05 PM
http://en.wikipedia.org/wiki/Drag_%28physics%29
Power
The power required to overcome the aerodynamic drag is given by:
Note that the power needed to push an object through a fluid increases as the cube of the velocity. A car cruising on a highway at 50 mph (80 km/h) may require only 10 horsepower (7.5 kW) to overcome air drag, but that same car at 100 mph (160 km/h) requires 80 hp (60 kW). With a doubling of speed the drag (force) quadruples per the formula. Exerting four times the force over a fixed distance produces four times as much work. At twice the speed the work (resulting in displacement over a fixed distance) is done twice faster. Since power is the rate of doing work, four times a work in half the time requires eight times the power.
It should be emphasized here that the drag equation is an approximation, and does not necessarily give a close approximation in every instance. Thus one should be careful when making assumptions using these equations.
Power
The power required to overcome the aerodynamic drag is given by:
Note that the power needed to push an object through a fluid increases as the cube of the velocity. A car cruising on a highway at 50 mph (80 km/h) may require only 10 horsepower (7.5 kW) to overcome air drag, but that same car at 100 mph (160 km/h) requires 80 hp (60 kW). With a doubling of speed the drag (force) quadruples per the formula. Exerting four times the force over a fixed distance produces four times as much work. At twice the speed the work (resulting in displacement over a fixed distance) is done twice faster. Since power is the rate of doing work, four times a work in half the time requires eight times the power.
It should be emphasized here that the drag equation is an approximation, and does not necessarily give a close approximation in every instance. Thus one should be careful when making assumptions using these equations.