04-20-2006, 02:30 PM
WEATHER CONDITIONS
It’s a simple fact: for optimum performance, you must retune your nitro engine every time you run it. Anyone who assumes that the needles can be left alone once they have been set is sadly mistaken. An overnight change in weather conditions may prevent an engine from running or may put it at risk of some damage if adjustments aren’t made to the fuel-mixture settings. Ignoring an engine’s tuning needs compromises its ability to make horsepower. In response to certain changes in weather, equipment and other variables, nitro engines must be regularly retuned.
Temperature. Hot weather requires a leaner mixture setting; cold weather requires a richer setting. Most people assume the opposite because they treat the mixture needle like a thermostat. It is wrong to assume that colder weather requires a leaner setting to keep heat in the engine and vice versa. Cold air is denser than hot air. The denser, colder air packs more oxygen into the engine, so going from hot weather to cold needs a commensurate increase of fuel to balance ratio of fuel-burning oxygen and the fuel itself. The opposite is true in hotter weather. Going from cold to hot weather requires a leaner mixture setting.
Humidity. Humidity is the amount of moisture (water vapor) in the air. Moisture in the air takes up volume that would otherwise be occupied by fuel-burning oxygen. Less oxygen means less fuel is required to maintain a proper ratio of air and fuel. High humidity requires a leaner mixture setting than dry conditions.
Barometric pressure. A barometer measures the atmospheric pressure (generally listed in the local newspaper or on the local weather forecast on TV). Higher barometric pressure readings mean more air is getting into the engine, requiring a richer mixture setting to balance the air/fuel ratio.
Altitude. Altitude is an important factor that most of us ignore, yet it affects the engine’s performance possibly more than any other element. The general formula for power loss with increases in altitude is 3 percent for every 1,000 feet above sea level. If you race in Colorado at 5,000 feet instead of in California at sea level, you can expect to lose about 15 percent of the engine’s potential power output, if the engine is tuned properly.
Air is thinner at higher altitudes, which means there’s less fuel-burning oxygen than at sea level. You might sense a common theme here: less air (oxygen) means less fuel to maintain the proper air/fuel ratio. So, running at higher altitudes requires a leaner mixture setting than running at sea level.
TUNING
This chart indicates the direction in which you should adjust the fuel mixture when faced with changing weather and other conditions. It assumes the engine is currently well tuned. You could face any combination of conditions listed in the chart; knowing which way to go with the mixture adjustments is half the battle.
Higher air temperature Lean
Lower air temperature Rich
Higher humidity Lean
Lower humidity Rich
Higher barometric pressure Rich
Lower barometric pressure Lean
Higher altitude Lean
Lower altitude Rich
Higher nitro content Rich
Lower nitro content Lean
Higher oil content Lean
Lower oil content Rich
Hotter glow plug Rich
Colder glow plug Lean
It’s a simple fact: for optimum performance, you must retune your nitro engine every time you run it. Anyone who assumes that the needles can be left alone once they have been set is sadly mistaken. An overnight change in weather conditions may prevent an engine from running or may put it at risk of some damage if adjustments aren’t made to the fuel-mixture settings. Ignoring an engine’s tuning needs compromises its ability to make horsepower. In response to certain changes in weather, equipment and other variables, nitro engines must be regularly retuned.
Temperature. Hot weather requires a leaner mixture setting; cold weather requires a richer setting. Most people assume the opposite because they treat the mixture needle like a thermostat. It is wrong to assume that colder weather requires a leaner setting to keep heat in the engine and vice versa. Cold air is denser than hot air. The denser, colder air packs more oxygen into the engine, so going from hot weather to cold needs a commensurate increase of fuel to balance ratio of fuel-burning oxygen and the fuel itself. The opposite is true in hotter weather. Going from cold to hot weather requires a leaner mixture setting.
Humidity. Humidity is the amount of moisture (water vapor) in the air. Moisture in the air takes up volume that would otherwise be occupied by fuel-burning oxygen. Less oxygen means less fuel is required to maintain a proper ratio of air and fuel. High humidity requires a leaner mixture setting than dry conditions.
Barometric pressure. A barometer measures the atmospheric pressure (generally listed in the local newspaper or on the local weather forecast on TV). Higher barometric pressure readings mean more air is getting into the engine, requiring a richer mixture setting to balance the air/fuel ratio.
Altitude. Altitude is an important factor that most of us ignore, yet it affects the engine’s performance possibly more than any other element. The general formula for power loss with increases in altitude is 3 percent for every 1,000 feet above sea level. If you race in Colorado at 5,000 feet instead of in California at sea level, you can expect to lose about 15 percent of the engine’s potential power output, if the engine is tuned properly.
Air is thinner at higher altitudes, which means there’s less fuel-burning oxygen than at sea level. You might sense a common theme here: less air (oxygen) means less fuel to maintain the proper air/fuel ratio. So, running at higher altitudes requires a leaner mixture setting than running at sea level.
TUNING
This chart indicates the direction in which you should adjust the fuel mixture when faced with changing weather and other conditions. It assumes the engine is currently well tuned. You could face any combination of conditions listed in the chart; knowing which way to go with the mixture adjustments is half the battle.
Higher air temperature Lean
Lower air temperature Rich
Higher humidity Lean
Lower humidity Rich
Higher barometric pressure Rich
Lower barometric pressure Lean
Higher altitude Lean
Lower altitude Rich
Higher nitro content Rich
Lower nitro content Lean
Higher oil content Lean
Lower oil content Rich
Hotter glow plug Rich
Colder glow plug Lean